REVIEW ARTICLE

AFM: a versatile tool in biophysics

Andrea Alessandrini and Paolo Facci

INFM National Research Center on ‘nanoStructures and bioSystems at Surfaces-S3’,
Via Campi 213/A, 41100 Modena, Italy
E-mail: p.facci@unimo.it

Received 10 September 2004, in final form 2 March 2005
Published 28 April 2005
Online at stacks.iop.org/MST/16/R65

Abstract
Here we review the applications of atomic force microscopy to the study of samples of biological origin. Emphasis is given to provide the reader with information on the broad range of different biophysical applications that, to date, such a technique can deal with. After recalling briefly the operating principles of an atomic force microscope, the broad field of bio-imaging applications is faced (DNA, DNA–protein interaction, proteins, lipid membranes, cells); thereafter, the use of the atomic force microscope to measure forces is introduced and force mapping on living cells is discussed. This section is followed by the description of the use of force curves in assessing single-molecule inter- and intramolecular interactions. A paragraph on the perspectives of the technique in biophysical applications concludes the paper. We hope that this review can help the reader in appreciating how atomic force microscopy contributes to the current explosive growth of nanobiosciences, where biology, chemistry and physics merge.

Keywords: AFM, biophysics, force spectroscopy, DNA, DNA–protein interaction, proteins, lipids, membranes, cells

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The atomic force microscope (AFM) [1] belongs to the broad family of scanning probe microscopes in which a proximal probe is exploited for investigating properties of surfaces with subnanometre resolution. The AFM, initially developed to overcome the limitations of its ancestor, the scanning tunnelling microscope (STM) [2], in imaging non-conducting samples, immediately attracted the attention of the biophysical community [3–10]. At the beginning the emphasis was mainly on the improved imaging resolution compared to that of optical microscopy, but, soon after, it became clear that AFM was much more than just a high-resolution microscope. The possibilities of spectroscopic analysis, surface modification and molecular manipulation gave rise to a real breakthrough in the realm of AFM use.

In biological applications, the most appealing advantage of the AFM as a high-resolution microscope in comparison with other techniques such as SEM and TEM, is that it allows measurements of native biological samples in physiological-like conditions [11, 12], avoiding complex sample preparation procedures and artefacts connected to them. The use of mild imaging conditions opened the way to dynamic studies in which conformational changes and molecular interactions could be followed in real time at single-molecule level. The set of samples of biological interest studied by AFM ranges nowadays from the smallest biomolecules, such as phospholipids, proteins, DNA, RNA, to subcellular structures (e.g. membranes), all the way down to living cells and tissues. Not only structural properties can be investigated, but also mechanical or chemical and functional properties are the focus of many AFM applications. In this review we will outline the application of the AFM in the biophysical science. We will start with a brief description of how the AFM works, then we will review the applications of the technique as far as imaging is concerned, starting from DNA and proteins to living cells; afterwards we will move to non-imaging techniques in which the method of force curves is exploited to investigate molecular
interactions. At the end we will summarize the possible future trends in this field enumerating the most promising forthcoming technical developments and appealing scientific problems that could be faced using the AFM.

2. Fundamental elements of the atomic force microscope

Several excellent reviews can be found in the literature on issues related to instrumental aspects of the AFM [13–15] and we direct the reader to them for a more exhaustive review. In what follows we will just briefly recall the operating principles of an AFM and will summarize the imaging modes that are of main interest to biophysical research.

2.1. How does the AFM work?

The AFM works by scanning, in a raster fashion, a very tiny tip mounted at the end of a flexible microcantilever in gentle touch with the sample. This relative motion is performed with sub-Angstrom accuracy by a piezoelectric actuator (usually a tube, sometimes a tripod). Interacting with the sample the cantilever deflects and the tip–sample interaction can be monitored with high resolution exploiting a laser beam impinging on the back of the cantilever [16]. The beam is reflected towards a split photodetector configuring an optical lever which amplifies cantilever deflections. In almost all operating modes, a feedback circuit, connected to the cantilever deflection sensor, keeps tip–sample interaction at a fixed value controlling the tip–sample distance. The amount of feedback signal, measured at each scanning point of a 2D matrix, concurs to form a 3D reconstruction of the sample topography which is usually displayed as an image. In figure 1 a scheme of an AFM is reported in a typical configuration for biological applications, where it is coupled with an optical microscope to simultaneously acquire an optical image and the surface topography with the AFM.

2.2. Cantilevers and tips

The scanning probe is the heart of the AFM, as for every scanning probe-based technique. The most common cantilevers used nowadays are realized by exploiting silicon micromachining technology [17–19]. In figure 2(a) a scanning electron microscope image of a silicon nitride microfabricated cantilever chip, usually used for contact AFM, is shown. At the end of a cantilever a tiny pyramid, the tip, is integrated (figure 2(b)). Depending on the imaging mode adopted, different types of cantilevers and tips may be used. When the AFM is operated in the static contact mode, the stiffness of the cantilever should be as low as possible (less than the interatomic spring constant of atoms in a solid), whereas in dynamic operation modes (see below) higher values for the spring constant help us reduce noise and instabilities. Figure 2(c) reports an image of a silicon cantilever and tip, usually used in dynamic operation modes, and a magnified view of the integrated silicon tip is shown in figure 2(d).

Typical spring constants for AFM cantilevers range from 0.01 N m^{-1} to 100 N m^{-1}, enabling a force sensitivity down to 10^{-11} N. The limit in force sensitivity is related to an interplay between thermal, electrical and optical noise.

The use of carbon nanotubes as AFM tips, figure 3, has represented a great breakthrough in terms of resolution [20–23]. Carbon nanotube tips possess a high aspect ratio, mechanical robustness, small diameter and a well-defined surface chemistry. They can be chemically functionalized, and appear to be the ideal probe for biological applications of the AFM requiring high resolution, particularly in the case of structural biology. The high-resolution imaging capabilities of carbon nanotube tips have been demonstrated on a variety of biological samples, such as DNA, IgG, IgM, GroES, SWI/SNF. The resolution attainable with carbon nanotube
tips is comparable with that of other ultimate resolution imaging techniques such as cryogenic electron microscopy, but carbon nanotubes offer also the possibility to be functionalized, exposing, thus, a well-defined chemical group or chemisorbed biomolecule. This opportunity can be exploited to study the spatial distribution of chemical functional groups or complementary biomolecules in a sample.

2.3. Imaging modes

The classification of the possible operation modes is strictly related to the region of the force field between the tip and the sample spanned by the tip during imaging. Considering a non-linear force field composed of a repulsive short range force (<1 nm) and an attractive long range one (van der Waals force, <100 nm), depending on the force experienced by the tip–cantilever ensemble, three working methods for the atomic force microscope can be defined. If the force between the tip and the sample is always repulsive and the tip is constantly in contact with the sample, the microscope works in the contact mode. If the tip experiences only an attractive force with the sample and it never touches the sample, the usually called true-non-contact mode is being used. If the tip experiences both the attractive and the repulsive force with the sample, the intermittent-contact mode is used. In the following we will describe AFM imaging modes of interest for biological application. It is to be stressed that here only modes pertaining to imaging will be discussed, while other applications of the AFM, more closely related to force spectroscopy, will be discussed in a separate section.

The first imaging mode which has been developed is the contact mode, in which the tip is constantly in gentle touch with the sample surface [1]. In this imaging mode the applied force, hence cantilever deflection, is kept constant by the feedback system while the tip scans the surface. Images are created by recording the piezo-vertical position required to keep the force constant. This mode of operation can be used under aqueous environments allowing a reduction of the interaction force between the tip and the sample with respect to operation in air. The interaction force reduction comes from the removal of capillary forces due to the presence of a thin water layer on surfaces in air [24]. This mode is the one of choice as far as flat and rather rigid samples are involved (e.g. reconstituted membranes, 2D protein crystals) enabling the highest resolution level. Sometimes, image artefacts, such as tilt of the surface or drift of the scanner perpendicular to the surface, dominate the topography image over real topographical features, especially when imaging is performed over large areas with slow scan rate. To avoid low-frequency artefacts the error mode can be used [25], in which the cantilever deflection signal is recorded keeping the feedback response time as fast as possible. The error signal gives a measure of how well the feedback system is maintaining the desired deflection setpoint. Due to the finite response time of the feedback loop, high-frequency signals cannot be completely compensated, and the cantilever will not be always at the same deflection value, especially in the case of high-frequency signals, generating a compensation error, which can be exploited to obtain an image rich in information. Moreover, tilt and vertical drift of the scanner generally have a low frequency and do not contribute to the error-mode image.

When the tip is scanned in contact with the sample, lateral forces arise which cause a torsion of the cantilever. The torsion can be monitored by the signal from lateral segments of the photodiode [26]. Recording the torsion signal, surface distribution of different chemical functionalities, which result in different friction or adhesion properties with the tip, can be mapped. This operation mode is usually referred to as ‘chemical force microscopy’ [27]. Figure 4 shows a scheme of this operation mode.
A drawback of the contact mode is the development of dragging forces associated with the lateral movement of the tip in contact with the sample. This problem is particularly evident in the case of biological samples, which are usually loosely bound to the substrate and easily damageable.

To overcome this problem another mode of operation, the intermittent contact mode, has been developed (figure 5) [28]. In this case the cantilever is oscillated at a frequency near its resonance and the oscillation amplitude is monitored. Starting from a free oscillation amplitude, when the cantilever approaches the sample and starts to hit its surface, the oscillation amplitude is damped. By recording the feedback signal required to keep the amplitude constant, the topography of the sample surface can be obtained. The tip being only intermittently in contact with the sample, the dragging forces during scanning are greatly reduced [29]. In the intermittent contact mode the tip goes through both the attractive and the repulsive regions of the tip–sample force field during oscillation. The operation setpoint can be chosen so as to make attractive forces the dominant ones reducing damage to the sample and sometimes increasing resolution [30].

Technically, the cantilever can be oscillated by two methods [31]: acoustically or magnetically. In the first case the cantilever can be oscillated by a piezo-actuator in contact with the cantilever supporting chip, whereas in the second case the cantilever can be oscillated by means of an alternating magnetic field which acts on a magnetically susceptible film deposited on the backside of the cantilever [32]. Furthermore, important information on the viscoelastic properties of the sample can be obtained by monitoring the phase difference between the cantilever driving signal and the output oscillation signal [33]. In particular, the phase shift is strictly related to the amount of energy dissipated in the tip–sample contact and a mapping of the phase shift on a sample surface allows us to identify regions of different interaction properties [34, 35]. The development of intermittent contact modes of operation in liquid configured an important breakthrough for the application of the AFM in biology, especially in the case where single loosely immobilized molecules have to be imaged [36, 37]. Imaging at high resolution (about 1 nm) by intermittent contact mode AFM in liquid on biological samples has been reported [38], allowing us also to retrieve information about the interaction forces from the phase signal [39].

Dealing with the intermittent contact mode in liquid, a new technique which has been recently introduced for controlling in a better way the force applied by the tip is active quality factor control (active-Q) [40, 41]. This is a technique which allows us to increase the otherwise low quality factor for the oscillating cantilever in liquid and correspondingly to decrease the force applied by the tip on the sample.

2.4. Some considerations about resolution

Apical curvature radii of commercially available tips can be as small as 2 nm. However, spatial resolution is not simply related to this aspect; rather, it depends also on the type of sample being imaged. At variance with the scanning tunnelling microscope, in the AFM the interaction developing between probe and sample is not limited to the two nearest atoms of the tip and sample; long-range forces can also play a significant role, involving a huge number of atoms contributing to the contrast formation mechanism. Even if true atomic resolution images have been obtained by the AFM on layered samples [42], this resolution level is only possible in particular cases. As a general rule, the harder and flatter the sample the higher the spatial resolution achievable. Often, the resolution obtained is higher than that expected on the basis of the nominal value of the apical curvature radius, due to the presence of nanoasperities which may play the role of the true imaging tip [43]. The dependence of AFM resolution on the softness of the sample is of remarkable importance especially for biological samples, usually very soft and damageable during scans. Spatial resolution down to subnanometre level on biological samples has been obtained in the case of proteins in reconstituted membranes, which show a closely packed 2D molecular array; however, in the case of isolated proteins the resolution drops to a few nanometres. The resolution attainable is even worse, being in the range of a few tens of nanometres, in the case of living cells, due to the softness of the cell membrane. Moreover, the surface chemistry of the tips, usually not well defined, may limit the application of AFM in the investigation of biological samples. However, resolution is not only a question of tip dimensions. For example, the accurate control of the interaction between the tip and sample in dynamic operation modes, balancing the contribution of attractive and repulsive forces, can greatly enhance resolution [30].
3. Bio-imaging applications

3.1. DNA and DNA–protein interaction

Since the advent of atomic force microscopy, DNA has been the most studied sample among those of biological origin. DNA is now considered as the reference bio-sample against which new technical developments are tested [44]. The number of AFM experiments involving DNA further increased as a consequence of the development of the intermittent contact mode imaging technique in liquid [36, 37] which allowed the imaging of DNA molecules loosely bound to the substrate without problems connected to the dragging forces arising in contact mode experiments. This technique also allowed, as we will see below, the possibility of studying DNA–protein interaction in physiological conditions. So far, only rarely has image resolution reached the level needed to resolve the major groove of dsDNA [45], but improvements in the technique, especially regarding the tip, are expected to provide significant advancements in resolution. The first critical aspect to be taken into account for imaging DNA by AFM is its immobilization on a solid substrate. As a general consideration, AFM is a technique which probes a surface and biophysicists have to develop suitable strategies for immobilizing their samples at surfaces [46]. Ideally, the best immobilization approach should provide bonds between the molecule and surface strong enough to avoid the dragging effects induced by the scanning tip. However, the sample should still have enough mobility as to retain its native structure and, possibly, functionality. In the case of DNA the substrate of choice is mica, a mineral belonging to the silicate class, which provides an atomically flat surface with negative surface charge (arising from the surface exposed OH moieties) upon cleaving and immersion in aqueous solution. DNA immobilization is usually achieved by introducing divalent cations in solution which act as bridges between the negatively charged mica surface and the negatively charged DNA phosphate backbone [47–49]. Other surfaces used for immobilizing DNA include 3-aminopropyltriethoxysilane functionalized mica [50] or mica coated with Langmuir–Blodgett films [51]. Besides, the effect of substrate and sample preparation methods on the imaged conformation of the DNA has been investigated [52, 53]. In particular, the effect of the transition from three to two dimensions on DNA conformation and the consequent re-equilibration of the polymer on the surface have been elucidated. Once DNA arrives on the surface from solution it has two possibilities: (1) it can undergo relaxation at the surface reaching its equilibrium conformation; (2) it can adhere on the surface without equilibration, resembling a sort of projection of the 3D conformation on the surface (trapping condition). Which of the two situations takes place is a question pertaining to sample deposition protocol [54] and the nature of the surface onto which it is deposited [55]. The end-to-end distance of small DNA fragments on the substrate is a parameter which is usually exploited to determine if DNA deposition has been carried out under equilibrium conditions [54].

AFM images of DNA usually report a width of the molecule which is larger than the known diameter of the molecule (~2 nm, from x-ray diffraction data) [56, 57]. This is a typical feature of AFM measurements which arises when the radius of curvature of the tip is comparable with the dimensions of the imaged sample. The resulting image is a convolution of tip and sample geometry which leads to a widening of the sample structure. Using carbon nanotube tips, an apparent diameter of about 4.3 nm has been obtained [58]. However, in the case of DNA the apparent width also depends on the imaging conditions, including adhesion and humidity effects when it is imaged in air, and on the kind of solvent used during imaging [59] under liquid. Also the applied force influences DNA width as measured by AFM [59]. The measured height of DNA is another intriguing aspect of AFM imaging. Usually, it results to be less than the expected figure. The presence of a salt adlayer coating the substrate uniformly and acting as a height reference background may be the reason for this underestimate, but also the deformation of DNA under applied force should be considered [60]. It should be stressed that even if forces may be in the pico-newton range, the pressure applied can still be very high due to the small contact area.

The supercoiling of DNA molecules has been the subject of several studies, exploiting the topographic information given by AFM, which represent an advantage over electron microscopy [61]. Another advantage of AFM over electron microscopy is that ionic concentration is well defined when imaging is performed in liquid, whereas it becomes completely undefined when the sample is dried [62]. Also in this case, it is important to make use of trapping conditions which guarantee that DNA can preserve its native conformation once on the surface. When supercoiled DNA molecules are adsorbed on freshly cleaved mica, images show molecules in the shape of an open circle, evidencing relaxation on the surface. If the same molecules are deposited on spermine- or spermidine-treated mica, supercoiling is retained confirming that a trapping condition has been established which prevents DNA equilibration [53]. The height information has also been exploited to study the sequence-specific binding of particles or enzymes, such as the formation of 20 nucleotide triple helices [63] and G-wire quadruple helices in the presence of specific metal cations [64]. Other AFM investigations on DNA include the analysis of the radiation damage on DNA structure [65–68] and the structural perturbation induced by intercalating agent [69, 70]. The effect of ethidium bromide on the tertiary structure of DNA has been observed both in air [71] and in real time in liquid [62]. In both cases, an increase in ethidium bromide concentration leads to the formation of regions of plectonemic supercoiling.

Also DNA–protein interactions have been the object of several studies, performed both on dried samples and under physiological-like environment. DNA conformation near the protein binding site has been studied, including looping [72, 73], bending [74–76] and supercoiling [77]. When working in a physiological environment, biochemical processes have been followed in real time. For these studies the development of the intermittent contact mode in liquid has been critical, because it has allowed high-resolution imaging along with reduced dragging forces. Using this mode, immobilization of molecules on the surface can be so loose to enable their relative motion, guaranteeing, at the same time, high-resolution imaging. The random walk of Escherichia coli RNA polymerase (RNAP) along the DNA chain has been imaged in the case of non-specific complexes [78]. Figure 6
Figure 6. Tapping mode images showing the dynamics of a transcribing RNAP. (a) Image of the complex before the injection of NTP into the liquid cell. (b)–(g) Time-lapse images after transcription was resumed by injecting NTP into the imaging solution. In (h) the map of the DNA template used in the experiment is reported, with the sequence allowing the formation of the stalled elongation complex (1–70) highlighted. Reprinted with permission from [78]. Copyright 1999, Biophysical Society.

shows the dynamics of a transcribing RNAP. Upon addition of nucleoside triphosphates to the sample cell, the transcription was resumed, with the RNAP stably bound to the mica surface and the DNA sliding through the protein.

Other DNA–protein interactions studied by AFM include the tumour suppressor p53 protein bound to supercoiled and linear DNA [79, 80] and the CBF3–centromere DNA complexes [81]. DNA condensates have attracted a large number of AFM investigations, regarding also the dynamics of DNA condensation [82]. Different shapes of polycation-induced condensates such as flowerlike structures or toroids of different size, have been imaged. It has been shown that DNA condensation may be induced on the surface by silanes or protoamines, forming even larger condensates with respect to solution.

The study of chromatin by AFM represents a great challenge, its structure and molecular determinants not yet being fully understood [83–85]. AFM has allowed the elucidation of the correlation between the number of nucleosomes and the shortening of the DNA. Wang et al [86] managed to immobilize chromatin on glutaraldehyde (GD) modified mica allowing at the same time high-resolution imaging and the possibility of inducing structural modifications upon changes in environmental conditions, e.g. salt concentration (figure 7). Using this surface, the histonic proteins are covalently linked to GD-mica, while DNA is not constrained to the surface. By this approach, in a salt titration experiment, the complete loss of DNA from the polynucleosomal array at higher salt concentration has been real time followed in situ.

3.2. Proteins

Immediately after its invention, the potentialities of AFM for studying proteins were demonstrated [87, 88]. Both soluble and membrane proteins have been studied, revealing submolecular details. Developments both in sample preparation [46, 89] and in imaging condition/techniques [21, 43] allowed us to achieve images with resolution in the subnanometre range. In the case of isolated proteins, the resolution obtained is lower with respect to membrane proteins which can form closely packed 2D crystalline layers. It has been shown that imaging conditions, such as pH and salt concentration, may play an important role and are usually different for the immobilization and imaging steps of biological samples. A proper environment ensures imaging with forces in the order of some tens of pico-newtons, preventing sample distortion or disruption. Moreover, varying the imaging force, it is possible to shed light onto induced structural changes, using the AFM as a nanotool to manipulate single molecules [90]. In the following we will review AFM imaging of the two classes of water-soluble and membrane proteins.

The isolated components of the GroES chaperone machinery have been imaged in contact mode down to a lateral resolution of 1–2 nm [91]. The individual subunits of the GroES heptamer were clearly resolved together with the central depression. In this case, this level of resolution was reached only upon glutaraldehyde sample fixation. The use of carbon nanotube tips allowed a great improvement in resolution enabling the possibility of revealing submolecular details without sample fixation (figure 8) [92]. Isolated
Series of images taken over the same region of the deposited sample as the salt concentration is increased in steps from 0 to 1.4 M. The vertical scale (black to white) is 3 nm. The sample is a reconstituted MMTV polynucleosomal promoter array (the same molecule is identified by arrows in each image). The DNA is completely lost from the array by 1.2 M NaCl. Note how the histone protein remains fixed in place on the substrate, whereas the DNA is free to move. Reprinted with permission from [86]. Copyright 2002, Biophysical Society.

GroES imaged by a CVD-grown nanotube tip. The large scan area in (a) shows both ‘dome’ and ‘pore’ conformations, representing the two sides of GroES facing up. (b) A higher resolution image of the pore side shows the heptameric symmetry, which matches well with the crystal structure (c). Reproduced with permission from [92]. Copyright 2000, National Academy of Sciences, USA.

IgG and IgM antibody proteins have been imaged by AFM, revealing, when imaged at cryogenic temperatures, the typical Y-shape [93]. Even in this case carbon nanotube tips allowed resolution of the Y-shape IgG structure at room temperature and of the pentameric structure of IgM antibodies, revealing also the loop structure connecting two of the five Fc domains (joining loop) [92, 94].

In the majority of the cases, when isolated water-soluble proteins have to be imaged by AFM, they are immobilized on a substrate exploiting a suitable chemistry in order to sustain the scanning force of the tip. Using naturally occurring or protein engineering introduced functional surface groups it is possible to covalently bind proteins to a substrate enabling AFM to provide an estimate of the quality of the molecular layer which may be of interest for bioelectronics or biosensor applications (figure 9) [95, 96].

When membrane proteins packed into 2D crystalline arrays are imaged by AFM, subnanometre-scale lateral resolution images may be obtained. The high signal-to-noise ratio of AFM images enables us to retrieve structural details of biological molecules at the single-molecule level, making this technique the only one capable of imaging samples at this resolution level in physiological environment. X-ray diffraction and cryo-transmission electron microscopy (TEM) are the most frequently used techniques for obtaining structural...
that provided by x-ray or electron crystallography, but its general resolution does not match that of AFM. AFM does not have a resolution as high as x-ray crystallography but can provide high-resolution topography images of membrane proteins acquired by AFM and atomic models derived from x-ray crystallography correlate very well. Figure 10 shows an example of this correlation in the case of the porin outer membrane protein F (OmpF) imaged in a liquid environment at minimal tip–sample interaction force. This protein assumes a stable trimeric structure in the outer membrane of *E. coli* and is responsible for the passage of solutes across the membrane. In Figure 10(a), the periplasmic surface (atomic model on the left) of a porin OmpF crystal reconstituted in the presence of dimyrystoyl phosphatidylcholine is shown, whereas Figure 10(b) shows the extracellular surface. The extracellular surface was exposed by exploiting the AFM tip to remove the first layer of the double layer structure in which the proteins assemble forming the crystal. A deviation from the atomic model, which represents an average result, may be ascribed to long and flexible loops protruding from the membrane. Indeed, comparing average and standard deviation maps it is also possible to distinguish between common structural details of the proteins and regions characterized by structural variability. Other membrane proteins which have been imaged at subnanometre resolution are the light-driven proton pump bacteriorhodopsin that is regularly packed in the purple membrane of *Halobacterium salinarum*; the hexagonally packed intermediate (HPI) layer from *Deinococcus radiodurans*; molecular motors such as F1F0-adenosine triphosphate (ATP) synthase and the 29 rotary motor identifying in both cases the subunits constituting the proteins; bacterial water channels such as Aquaporin 1, Aquaporin Z and the Aquaporin 0 (or major intrinsic protein, MPI). As a general rule, AFM does not have a resolution as high as that provided by x-ray or electron crystallography, but its main advantages lie in the real space imaging and in the possibility of monitoring conformational changes of proteins in situ. However, all the mapped structural changes were done on protein with known structures that had been solved using traditional methods. On completely unknown structures the AFM image interpretation would be of huge difficulty.

Among the conformational changes studied by AFM, the channel closure of OmpF porins induced by voltage drop, pH and K+ gradient variations is of particular relevance. The extracellular polypeptides loops are flexible domains which have been shown to collapse towards the trimer centre formed by individual porin in response to an electric potential >200 mV across the membrane (in this case the membrane is deposited on conductive highly oriented pyrolytic graphite, HOPG), a K+ gradient > 0.3 M and a pH < 3. The conformational changes of the cytoplasmic and extracellular surface of gap junction plaques have been visualized by AFM in buffer solution. In particular, the extracellular conformational changes in the presence of Ca2+, namely the reduction of the channel entrance diameter, were identified. Also the membrane protein diffusion in the lipid membrane has been followed in the case of sodium-driven rotors ATP synthase from *Ilyobacter tartaricus* by repeated imaging of the same area. It is to be stressed that the movement of individual proteins was not influenced by the scanning direction of the tip. The diffusion coefficient obtained by AFM images was lower than what was expected for the diffusion of membrane protein in a free-standing membrane. The lower diffusion coefficient may be related to the fact that the membrane is supported by mica to allow high-resolution imaging.

AFM is also employed in the study of membrane proteins in native membrane patches even if at lower resolution. Membrane patches from *Xenopus laevis* oocytes are usually used, because it is quite easy to heterologously express the proteins of interest. Different methods have been developed to image by AFM both the extra- and intra-side of the plasma membrane deposited on a solid support. Also nuclear pores in the nuclear membranes isolated from *Xenopus oocytes* have been imaged in near physiological conditions, following conformational changes in real time in response to ATP, calcium and pH. Routine identification by AFM of a specific membrane protein embedded in native membranes is a difficult task; towards this goal the membrane can be incubated with antibodies, possibly conjugated to gold colloids against the protein of interest which can be clearly identified by the height increment in the surface topography due to the bound antibody.

3.3. Supported lipid films

AFM is a powerful technique also for studying supported lipid films. Its potentialities come from the capacity of imaging lipid films at high lateral and vertical resolution in a liquid environment, the ability of investigating local mechanical properties and interaction force and the possibility of using the AFM tip as a nanotool to locally modify the films. Samples are usually prepared by using a Langmuir–Blodgett trough which allows us to transfer lipid films from the air–water interface to a solid support. Both monolayers and
The presence of spots separated by 0.5 nm from the molecular level [115–117]. In the case of mono and bilayers consisting of different immiscible lipids, phase separation can be visualized not only by topography but also by lateral force microscopy. Differences in lipid molecular packing and mechanical properties can be responsible for the contrast in lateral force between different domains both in air and in liquid (figure 12) [111, 127]. The different order degree may cause a difference in dissipation modes. Another mechanism of contrast formation in lateral force microscopy can be ascribed to different mechanical properties of different domains. This feature can be responsible for establishing a different contact area between the tip and the various domains. At the same time, the difference in mechanical properties may also account for a discrepancy between the measured and expected height difference of different domains. Also different surface interaction (steric, hydration, short range repulsion, etc) may influence the contrast mechanism both in contact mode and in
lateral force microscopy in mono and bilayers composed of mixed lipid layers [128].

AFM studies on lipid membranes also include the role of membranes as support for inserting or immobilizing other biomolecules. The insertion in supported bilayers of small peptides such as gramicidin A and small model peptides [131] has been studied. As a support for immobilizing biomolecules, the lipid films have been used for anchoring DNA by exploiting positively charged lipids [51], proteins such as cytochrome c [132]. Moreover, negatively charged lipid films have been exploited as a substrate onto which several proteins crystallize allowing high-resolution AFM imaging [133].

3.4. AFM in cell biology

AFM applications in cell biology can be classified into several broad categories: imaging, micromanipulation studies, material property measurements and binding force measurements. The application of AFM to the study of mechanical properties and binding forces will be analysed in the following paragraphs after which the force-curve technique will be introduced and discussed. In this section we will focus on imaging applications. Imaging is the most straightforward application and a large number of cell types have been imaged by AFM taking advantage of the ease in studying biological samples under physiological buffer [134, 135]. Imaging of living cells has been coupled with controlled culture systems, enabling the possibility of continuous, long-term imaging. The possibility of controlling temperature and of continuous renewal of the culture medium by perfusion in order to prevent ionic strength variation due to evaporation, as well as fresh disposal of culture medium are basic requirements to be fulfilled to obtain long-term imaging of living cells [136, 137].

Moreover, AFM images can be collected together with light microscopy and fluorescence images to collect complementary information from the same sample area.

Whether the intermittent contact or the contact imaging mode represents the best way of imaging living cells is still a question under discussion. In the first mode lateral forces are greatly reduced in virtue of the intermittent contact between the tip and the sample which reduces the interaction time in comparison to the contact mode. Moreover, due to the high-frequency oscillation of cantilevers, the cellular surface may effectively become harder and less prone to deformation [138]. However, in some cases, the acoustic oscillations induced in the measuring environment might disturb living cells. Taking advantage of the phase signal, the intermittent contact mode can increase the amount of information that can be extracted from living cell images. The phase signal contrast is related to variations in material properties such as adhesion and viscoelasticity [139]. Being sensitive to local stiffness variations, phase imaging allows higher resolution imaging of the cellular surface [140] and a further improvement in resolution has been obtained by a positive feedback control of the cantilever oscillation amplitude [41]. Increasing up to three orders of magnitude the quality factor of the cantilever, imaging in the intermittent contact mode in liquid was performed at an interaction force below 100 pN. At the same time, the spectroscopic signal coming from the phase signal is greatly enhanced enabling us to distinguish areas with different dissipative interaction with improved resolution.

A typical contact-mode atomic force microscope image of a cell in physiological solution is reported in figure 13. The two images cover the same sample area and the left one is the usual height image, whereas on the right the corresponding ‘error image’ is reported. As a consequence of the loading force of the AFM tip on the cell membrane, the cell is indented and the membrane is pressed into the underlying cytosol. Stiffer structures under the membrane will be highlighted by this imaging mechanism. Large fibre structures are usually seen in AFM images of adherent cells such as fibroblast [141–143] and these fibres have been identified with stress fibres, i.e. bundles of actin filaments [144–146].

An important feature of AFM is the possibility of studying dynamic processes at high spatial resolution. However, time resolution is still rather low (technical advancements to increase scanning speed will be treated in the following), the acquisition time for one image being typically 1–3 min, limiting the time scale of observable phenomena to some minutes. Nevertheless, a broad range of dynamic biological phenomena have been studied by AFM, including the dynamics of actin filaments in living glial cells [141], the motility of cells [147] and the division of living cells (figure 14) [148]. The dynamic behaviour of intracellular structures has been examined for MDCK cells and the motion of particles along cytoskeletal elements has been followed [149]. For 3T3 fibroblasts, the extension and retraction dynamics of protruding edges has been followed, confirming that AFM imaging does not substantially perturb the imaged sample [144].

AFM appears to be a valuable tool also in the study of adaptation processes in response to mechanical stimuli of a cell, opening a new area in the field of biomechanics and
signal transduction [150]. Real-time variation in the height or volume of a single cell in response to a chemical stimulus has also been detected [151].

Atomic force microscopy has also been exploited to study the surface of bacterial cells, both after glutaraldehyde or drying pre-treatment and in hydrated conditions [152, 153], revealing details which have been impossible to detect by electron microscopy on native surfaces. Imaging the cell surface of microbial cells is a more demanding task with respect to animal cells, because they have no tendency to spread on solid surfaces. A valuable approach to study these cells consists in trapping them in porous filter membranes [154]. Using this technique the surface ultrastructure of living spores of the filamentous fungus *Phanerochaete chrysosporium* has been imaged [155], disclosing patterns of rodlets with 10 nm periodicity. AFM was also exploited to real-time image the enzyme digestion of the cell wall of *Saccharomyces cerevisiae* [156].

4. The force curve

The interest of the biophysical community in the potentiality of the AFM does not arise only because of the imaging capabilities of this technique, but also because of the possibility of studying intra- and inter-molecular forces. The operating tool of choice for this investigation is the force curve [157, 158]. The force curve consists in an approach–retract cycle between the tip and the sample during which the cantilever deflection is measured as a function of the relative motion. In figure 15 a typical force curve is shown. It can be divided into several regions. Starting from the right (region I) the AFM tip is far from the sample and no interaction is detected. Moving towards the left side of the plot (dotted curve), i.e. the tip is approaching the sample, no interaction is detected until the cantilever deflects towards the sample due to van der Waals forces (region II). These forces cause the tip to snap into contact with the sample. The ‘jump to contact’ point corresponds to the position where the gradient of the interaction force exceeds the cantilever spring constant. It is to be noted that at each position in the force curve the cantilever is deflected until its restoring force equals the interaction force with the sample, causing the system to be always at equilibrium. After the contact, approaching the tip further to the surface, a positive deflection of the cantilever arises (region III) due to repulsive forces. This is the contact region of the force curve, where elastic properties of the sample can be measured. Usually, the cantilever is moved
towards the sample until a preset force threshold is reached. After this happens, the movement direction is inverted and the cantilever starts moving away from the sample (solid curve). Initially, the behaviour of the cantilever during withdrawal equals that described for the approach, but, due to adhesion between the tip and sample, the cantilever starts to deflect negatively (region IV) until the adhesion force is overcome by the cantilever restoring force and the contact breaks. The hysteretic behaviour of curves measured in air is largely due to capillary forces arising from the thin water film wetting both probe and sample. It is clear that a large adhesion limits the range of information that can be obtained from a force curve, especially in the very interesting region of small tip–sample separation. However, the capillary forces can be greatly reduced by performing measurements in liquid, preserving at the same time a physiological-like environment for biological samples. The magnitude of the adhesion force can be used to compare interaction strengths between different molecules in a variety of environments [159–163]. To study the adhesion force between different chemical functionalities both tip and substrate are modified with adlayers terminating with an appropriate chemical group. After the tip–sample contact has been ruptured, they are again separated in a way that no interaction is measured (again region I). The atomic force microscope measures the cantilever deflection as a function of the z-piezo displacement, which differs from the actual tip–sample distance, to which force potentials refer, by the amount of cantilever deflection. However, by subtracting the cantilever deflection from the z-piezo movement, the actual force versus tip–sample distance can be recovered, as shown in figure 16 [164]. This transformation allows us to interpret the force curve in terms of force laws, which describe the force as a function of the probe sample separation.

In a force-curve cycle the cantilever deflection is measured, but it can be converted to force using Hooke’s law:

\[F = -kd \]

where \(F \) is the force, \(k \) is the spring constant of the cantilever and \(d \) is the cantilever deflection. Different methods of measuring the cantilever spring constant independently have been developed. Essentially they may be divided into four categories: (1) methods based on the cantilever geometrical factors [165–168]; (2) methods based on the measurement of a static deflection applying a known force to the cantilever [169]; (3) methods based on measuring dynamical properties with different masses on the cantilever (added mass method) [170]; (4) methods based on the thermal noise of cantilevers [171, 172]. The last method is the most widely used. The cantilever is treated as a simple harmonic oscillator excited by thermal noise. However, the best accuracy in the measurement of the spring constant is around 15–20%, so the most convenient approach to improve accuracy in force measurements would be that of having an internal reference coming from a physical process known to take place at a well-defined force.

Using a cantilever with a very small spring constant, which can be as small as 10 mN m\(^{-1}\), a resolution of 10 pN can be obtained in the measurement of interaction forces. The main noise sources come from thermal noise and from laser power (radiation pressure variations).

5. Force mapping

By collecting a set of force curves from many points on a sample, a two-dimensional map of the tip–surface interaction can be retrieved [164]. Typically, one force curve for each image pixel point is collected and the force curves may be analysed both individually and collectively. The force curves as a whole form a three-dimensional ‘force volume’ [164, 173, 174]. In the ‘force volume’ a two-dimensional matrix of force curves is acquired. Each force curve can be assigned to a defined pixel of a topographic image acquired at the same time as a result of the z-position at which a predefined force setpoint is reached. Recording all the force curves it is possible to recover a map of the cantilever deflection at a specific constant distance from the point of maximum applied force, which in the case of a rigid sample means a constant distance from the sample surface. In figure 17 a representative line scan of a force volume image is depicted. From the value of the cantilever deflection at a given distance from the point of maximum force, the elasticity map of the sample can be recovered.

As will be clear in the following, both the contact and out of contact parts of the force curve (approach and retract portions) can be exploited to create a map of the tip–sample interaction [175].
Now we will concentrate on the specific interactions that AFM can detect and we will see how the force curve can be used to study both single-molecule forces and to create a map of the interactions with high lateral resolution.

6. Interactions measured by the atomic force microscope

The force curves can be rich in information from a biophysical point of view [175]. A useful classification of the data that can be extracted from force curves considers separately information derived from the approach part of the curve and from the retracting one.

6.1. Approach curve

Elasticity information on a biological sample can be obtained exploiting the approach part of the force curve. It is clear that, when the elastic constants of the cantilever and of the sample are comparable, once the tip is in contact with the sample, upon further approaching the sample will undergo indentation, resulting in a minor cantilever deflection for the same z-piezo movement with respect to an undeformable sample (see figure 18).

By measuring indentation at a given force, the local elasticity of the sample in terms of Young’s modulus can be extracted, assuming a model for the tip–sample contact mechanics [173, 177–180]. A simple but not completely appropriate model is the Hertz model [181]. Usually, the Sneddon extension [182] to the Hertz model to account for the particular geometry of the indenting tip is used for the interpretation of AFM force curves. However, in AFM force curve experiments, especially in the case of soft cells, the assumptions of the Hertz model are not fulfilled. In particular, the axis along which the force is applied by the AFM tip is not perpendicular to the sample surface; lateral forces may be present and, usually, the examined samples are not isotropic. Studying cells, the cases in which the Hertz model fails are edges of cells where the very thin sample may cause the tip to feel the underlying stiff substrate or stress fibres representing very heterogeneous areas. Even if the retrieval of quantitative data is rather difficult, due to the criticality in the choice of the right model for the tip–sample interaction and to the heterogeneity of the biological samples, useful information, such as spatial and temporal variation of the mechanical properties, can be obtained. Moreover, maps of the local elasticity can be obtained by force mapping and spatial and temporal variations of the elasticity as a consequence of chemical treatments can be followed in real time as will be discussed in the section dedicated to force mapping of living cells. Not only the stiffness of biological samples can be measured, but also their viscoelastic properties [183–186]. In this case the sample under investigation can be rapidly indented and its slow recovery over a period of time is measured [187, 188]. The use of force–time curves, instead of force–distance curves, makes it possible to distinguish between the elastic and viscous contributions to the cantilever deflection. Using a low loading rate for the force-curve measurement the elastic behaviour predominates whereas, at high loading rate, the viscous properties are significant [187]. Several biological samples have been characterized from a mechanical point of view by means of AFM. They range from proteins [179] and chromosomes [189] to cells [179, 190].
The most important application of this technique regards 2D mapping of the viscoelastic properties of living cells [173, 179, 187, 194, 195]. Different regions of a cell present generally different elastic behaviour that can be mapped with a lateral resolution down to 50–100 nm. The low value for the lateral resolution on a living cell, compared to the high-resolution capabilities of the atomic force microscope, is a consequence of the low elastic moduli of living cells (1–150 kPa) [196]. The low stiffness of living cells leads to a high indentation of the tip in the cell membrane and a large contact area which limits resolution. Exploiting information from force-curve analysis, a height image of cells at zero loading force can be reconstructed. Unfortunately, determining the zero point (the point of the tip–sample contact) in the force–distance curve is not easy on soft samples because they do not show a sharp increase in the cantilever deflection. To overcome this problem, the equation describing the relation between the height of the sample, the cantilever deflection and the other sample parameters can be exploited to obtain a set of equations that can be inverted to obtain at the same time both the elastic modulus and the height offset representing the zero point. By fitting a contact mechanics model for the tip and sample to every force curve, the contact point between the tip and sample can be extracted [145] and used to reconstruct the zero loading force image.

The effect of a cytoskeleton-disrupting drug such as cytochalasin D was evaluated on fibroblasts [145]. The disaggregation of the F-actin network of the cytoskeleton by cytochalasin D led to a reduction of the cell stiffness, showing that the F-actin network plays a crucial role in maintaining the mechanical properties of cells. Figure 19 reports a time sequence of elasticity maps, together with topographical images (both height and deflection images to highlight the presence of stress fibres) showing the effect of a 10 μM cytochalasin D solution. The elasticity maps are reported in grey colour scale with darker areas corresponding to regions with lower Young’s modulus. It is clear that 60 min after the drug was added, the average stiffness of the cell is greatly reduced. Another experiment stressed again the role of the F-actin cytoskeleton in maintaining the cellular mechanical properties [197]. In this case viniculin-deficient cells were compared, as far as elasticity is concerned, to wild-type cells. Viniculin being essential in the F-actin cytoskeleton linking to integrin receptors on the cell surface, the elasticity maps revealed, as expected, a lower Young’s modulus for viniculin deficient cells.

In a fashion similar to a micro-detector, the atomic force microscope has been used to map in cardiomyocytes the mechanical pulse and its spatial variation [198]. The difference in the behaviour of single isolated cells and confluent layers has been characterized in this case, obtaining a more stable pulsing for the confluent layer case. Direct evidence of the driving force during cell division was given by Matzke et al [148]. The authors probed along a single line scan the stiffening of the cortex of adherent cultured cells during cell division. Using a sort of monodimensional force mapping they were able to detect a cortical stiffening over the equatorial region and a further stiffening as the furrow starts. It is to be noted that the AFM probing tip did not perturb the dividing cells as confirmed by video-microscopy used to correlate AFM data to the mitotic event.

Figure 18. Indentation measurement by force-curve analysis. (a) Force curve on a rigid sample; (b) force curve on a soft sample. In this case the sample is indented and for the same cantilever deflection the z-piezo movement is higher than for the case of a rigid sample. (c) Comparison between two force curves performed on a living cell (dotted curve) and on the adjacent glass substrate (solid curve). The two curves have been aligned in order to have the same contact point.
Figure 19. Time series of elasticity maps of an NRK fibroblast showing disaggregation of the actin network by 10 mM cytochalasin D and correlation with AFM and fluorescence images. (a) Contact AFM image. (b) AFM deflection image; stress fibres are depicted by arrows. (c) Height image at zero loading force calculated from the reference force map. (d) Corresponding reference elasticity map. (e), (f) Young’s modulus decreases gradually within 40 min. (g) Elasticity map and (h) height image at zero loading force obtained after 60 min showing strong segmentation of the cytosol. (i) Corresponding fluorescence images to identify structures in (g) and (h) as clots of actin. The arrow in (h) points to a very flat region (500 nm) that correlates with a region devoid of f-actin (i, arrow). Reprinted with permission from [145]. Copyright 2000, Biophysical Society.

6.2. Retract curve

The retract portion of a force curve can give access to a wide range of inter- and intra-molecular interactions at the single-molecule level. We will divide this section into two parts: the first part dedicated to intermolecular interactions, in particular recognition events between biological partners, and the second one dedicated to intramolecular forces concentrating on the mechanical properties of DNA and on the mechanical unfolding of proteins.

6.2.1. Intermolecular interactions. As already described, the retract curve can give information on the adhesion force between the tip and sample and adhesion maps on a sample surface can be obtained by an approach called chemical force microscopy [27, 199]. If on the sample surface there is a molecule and the tip is functionalized in order to expose a partner suitable to specific interaction with it off its surface, the ligand–receptor interaction can be measured by exploiting the rupture force in the retract portion of the force curve. When the tip and the surface are brought into contact, the molecular partners interact. Upon cantilever retraction, the bonds previously formed are disrupted and the typical rupture force is measured. In all these experiments, it is important that the strength of the intermolecular bond established between partners be weaker than those used for anchoring them to the surface. To this end, specific techniques have been developed to immobilize biomolecules on surfaces by bioconjugation chemistry preserving their recognition capabilities [200–202].

In an elegant experiment by Grandbois et al the strength of a single covalent bond has been measured [203]. The sulfur–gold bond, which is often exploited to immobilize biomolecules on surfaces, is able to withstand forces up to 1.4 nN. If the biotin–avidin interaction force is considered, its strength is about 200 pN at a loading rate of 10^5 pN s⁻¹ [204], therefore the sulfur–gold covalent bond would be stronger than six biotin–avidin interactions, enabling stable force-curve measurements without running the risk of detaching the molecular partners from the respective surfaces. The statistical analysis of data is of great importance to extract information about the single-molecule binding interaction. Usually, a distribution of the number of rupture events as a function of the
rupture force is obtained. The presence of a quantum of rupture force is the indication that a single-molecule interaction is measured, the multiples of the binding force being the result of coincident breakage of several bonds. Moreover, when a retract curve presents several rupture events, the last one represents most likely a single bond breakage. To avoid the establishment of too many bonds between molecules on the tip and molecules on the surface, the density of molecules on both surfaces must be kept at minimum. With this aim, the use of biofunctionalized carbon nanotubes as tips will enable a remarkable advance in the technique [23], allowing for only a few molecules, possibly just one, on the tip. In order to avoid misinterpretation of the results, some control experiments have to be run. For example, if the specific partner of the surface immobilized biomolecule is inserted in the medium, this will block the partner on the surface and no rupture event has to be detected in the measurements.

Several ligand–receptor pairs have been studied, including biotin–(strept)avidin [23, 205, 206], antibody–antigen [200, 207–212], the interaction between complementary strands of DNA [213–219] and interactions between the protein of the cell membrane and specific partners on the AFM tip [220, 221].

Also in the case of the retract portion of the force curve the ability of the AFM to detect specific biological interaction and recognition events can be coupled with the imaging capabilities to map the lateral distribution of binding sites and the binding characteristics at the same time. The so-called adhesion mode or affinity mode imaging is obtained [173, 212, 222–224]. In particular applications, also forces resulting from specific recognition events in lateral force microscopy can be used as a contrast parameter [217].

The biotin–avidin couple represents undoubtedly the model system for the binding force measurements by AFM tips. The values of the interaction force obtained by different laboratories agree well, reinforcing the reliability of these force spectroscopy measurements. The biotin–(strept)avidin system has also been the test system for demonstrating [225] the exponential dependence on force loading rate of the rupture force predicted by Evans and Ritchie for weak non-covalent bonds [226]. The presence of different regimes of loading rate was correlated with the number of activation barriers in the unbinding process. Moreover, by using a streptavidin mutant, the molecular region determining the activation barrier was identified [225]. It is clear that, by varying the kinetics of the ligand–receptor unbinding, other information on the ligand–receptor bond is accessible by force spectroscopy. Affinity rate constants together with energy barriers, equilibrium dissociation constant and bond width can be estimated [200, 227–229]. Adhesion images exploiting the biotin–streptavidin binding have been obtained by Ludwig et al. [230]. They were able to obtain a topographic and adhesion image, at the same time, of a surface patterned with streptavidin and BSA. Blocking the surface with free biotin in solution the topographic image was retained whereas the adhesion image was lost.

Whereas a biotin–avidin couple has a high binding affinity ($K_d = 10^{-15}$ M), antigen–antibody interactions are characterized by a lower binding affinity and a greater binding sensitivity to steric effects. These factors have been overcome by using flexible cross-linkers to link either the antigen or the antibody to the tip [200, 209, 210]. The flexible linker endows the molecular partners with sufficient mobility to overcome problems of steric hindrance or misorientation. In these cases, usually a polyethylene glycol (PEG) spacer is used, because it is a water-soluble and non-adhesive polymer. When the coupling of the antigen or antibody to the tip is realized by means of such a cross-linker, the rupture event is not characterized by an immediate detachment on the retract portion of the force curve, but a delayed event is found which follows the stretching of the spacer. Adjusting the concentration of antibody used to functionalize the tip, a single-molecule binding event can be studied, allowing us to discern both the binding sites of the antigen and the probability of the rupture event as a function of the lateral position of the antibody over the antigen. Raab et al. [231] were able to map lysozyme molecules on mica using anti-lysozyme antibodies tethered to the tip by a PEG spacer (figure 20).

Using the intermittent contact mode in which the cantilever is magnetically oscillated and the tip is functionalized with antibodies, they were able to localize antigens on the mica surface with 3 nm lateral resolution. The recognition signal comes from the extra damping of the oscillation when a specific recognition event between the molecular partners on the sample and the tip occurs. This method allows for a high lateral resolution in determining antigen position, even if a quantitative measurement of adhesion forces is much more difficult to obtain.

Force spectroscopy experiments on DNA pertain for some aspects to intermolecular interactions, in particular as far as the unzipping forces are considered. Usually one strand of

Figure 20. (a) Topography image of a lysozyme multilayer. Image size was 500 nm. (b) Multilayer recognition image. Imaging was performed using an AFM tip carrying one half-antibody with access to the antigens on the surface. The bright dots representing recognition profiles indicate lateral positions where antibody–antigen recognition occurred. (c) Multilayer block image. The image was obtained with the same half-antibody tip and conditions as in (b) in the presence of free antibodies in solution. Reprinted with permission from [231]. Copyright 1999, Nature Publishing Group. In electronic form: http://www.nature.com/nbt.
a DNA oligomer was stretched by pulling the 5′ relaxation [233]. Using a different experimental arrangement, showing also that after some base-pair breaking, the molecule strength, temperature and sequence has been investigated, dependence of the force-induced melting threshold on the ionic unbinding forces on the number of base pairs. Also the unzipping process and a non-linear dependence of the number of base pairs, proving the single barrier character of energy minimum from the barrier increased linearly with the logarithm of the pulling velocity and the separation of the numbers of base pairs was found to scale linearly with the forces [214]. The rupture force of duplexes with different strands of DNA getting rid of problems connected to unspecific possible to study the unzipping force between complementary strands of DNA immobilized on tip and surface report different values for the interaction force per base pair [213–215]. The discrepancy may be due to an interplay between specific and unspecific forces [232]. Using a cross-linker between the strands and the surfaces it has been possible to study the unzipping force between complementary strands of DNA getting rid of problems connected to unspecific forces [214]. The rupture force of duplexes with different numbers of base pairs was found to scale linearly with the logarithm of the pulling velocity and the separation of the energy minimum from the barrier increased linearly with the number of base pairs, proving the single barrier character of the unzipping process and a non-linear dependence of the unbinding forces on the number of base pairs. Also the dependence of the force-induced melting threshold on the ionic strength, temperature and sequence has been investigated, showing also that after some base-pair breaking, the molecule may recombine to the double-helical conformation upon relaxation [233]. Using a different experimental arrangement, a DNA oligomer was stretched by pulling the 5′ and 3′ ends of the two strands (figure 21) [234]. In this experiment dsDNA molecules with repeating blocks of ten pure GC and ten pure AT base pairs were unzipped obtaining, as expected from simulation predictions, variations in the unzipping force of 5 to 10 pN according to the different base pairs involved. In this work ten-base-pair resolution has been obtained in the force unzipping and it represents the best resolution to date. The unbinding force dependence on the presence of sequence-specific and unspecific intercalating agents such as 3,6-diaminopuridine and ethidium bromide has been explored [235]. The intercalating compounds lead to a reduction of the unbinding force, probably due to a conformational change of the DNA duplex to accommodate the molecules.

Structural transitions of the DNA duplex that precede the unbinding events will be discussed in the context of intermolecular forces.

Of great importance are the investigations of the interaction between biomolecules on the AFM tip and the corresponding partners at the cell membrane. These experiments are challenging because molecules in the cell membrane can be easily displaced from their native location upon pulling the tip or they may be present in too low a density to be detected. However, the possibility of detecting and mapping the distribution of receptors on the membrane of a living cell by force spectroscopy has prompted several works on this aspect [236, 237]. The binding force between an arginine-glycine-asparagine (RGD) peptide and integrin, its cognate receptor, has been measured on living cells [220]. The binding force appears to depend not only on the type of integrin and its activation status, but also on the spatial conformation of the RGD containing sequence of the peptide or protein. In another experiment, the role of cross-linking of surface receptors in increasing their binding force has been demonstrated [238]. In this work concanavalin A was coupled to the AFM tip and the binding force to its receptors on the surface of NIH3T3 cells was measured before and after the receptors were fixed by glutaraldehyde or 3,3′-dithiobis(sulfosuccinimidylpropionate). Immobilized membrane proteins are less prone to diffuse laterally and this lack of mobility leads to a cooperative binding (the term cooperative means simultaneous breakage of multiple bonds) and hence to an increase in receptor binding force. In a sort of assay test, force mapping by atomic force microscopy was used to distinguish red blood cells of different ABO groups [221]. In this experiment a lectin functionalized tip is exploited to recognize a glycolipid present on the membrane of group A cells. The unbinding force map was able to construct an affinity map identifying the A cells from the O cells lacking the molecular partner.

6.2.2. Intramolecular interactions. The AFM can be very useful in studying also intramolecular interactions, which are, in general, weaker than those associated with bond rupture events. Mechanical properties and information about the conformation of single molecules can be extracted by stretching molecules bound between a tip and a substrate [239, 240]. Theories related to the thermodynamics of polymers can be used to fit the experimental data and extract information about the elasticity of single molecules [241]. Moreover, parameters obtained from the fitting can be used to establish if a single molecule or more than one molecule has been stretched. Elasticity implies that when a polymer is stretched between the tip and the substrate, restoring forces arise. The first restoring force that develops upon stretching a polymer is due to the entropy reduction as a consequence of the reduction in conformational degrees of freedom [242]. Increasing the pulling force, conformational changes can occur to the molecule, leading to bonds stretching and twisting (enthalpic elasticity) [243]. These effects endow the force–extension curves with specifically recognizable features. Major research efforts have been devoted to stretching DNA, to
identify conformational changes preceding strands unzipping, and to stretching proteins with the aim of shedding light on some aspects of their unfolding process.

Understanding DNA mechanical properties is of great importance for their implications in many biological processes. In the low extension–force regime (<65 pN) the restoring force is mainly entropic in nature and the DNA can be described by the ‘worm-like chain’ (WLC) model, in which the conformation of a polymer chain is considered as a continuous curve with constant bending elasticity [242, 245–247]. Fitting the WLC theory to the experimental curves values for DNA, persistence and contour lengths can be evaluated [248]. Increasing the stretching force, DNA undergoes conformational changes in which the stacking interactions of DNA bases are lost (B–S transition) resulting in extension of the molecule beyond its contour length [249].

The typical signature of this conformational change is the presence of a plateau in the force–extension curve, due to the fact that very little additional force is involved in the stretching of the molecule up to 1.7 times its B-conformation contour length [216, 250–252]. The presence of the plateau in the force–extension curve of DNA has also been interpreted in terms of a mere melting of the double helix, in which the base pairs break as the DNA unwinds during the transition [253, 254]. By stretching DNA beyond the B–S transition, a new conformational transition appears at about 150 pN [250]. Beyond 150 pN the double-stranded DNA is separated into the two strands, one of which remains bound to the protein end tethered to the substrate. However, this is rarely the case; rather the tip can interact with the protein at any point along its contour length. In order to make quantitative measurements several sources of systematic errors have to be controlled. The main error source comes from the spring constant calibration of the cantilever, which, in the most favourable cases, is of the order of 10–15%. Other sources of error come from drift of the cantilever or the whole experimental set-up. The dependence of the unfolding force on pulling speed requires a set of experiments to be performed at different retract speeds of the cantilever. At high speed in liquid, viscous drag on the cantilever can introduce errors and the technique would greatly benefit from the use of short and low noise cantilevers. The study of pulling-speed dependence of the unfolding force opens the possibility for extracting kinetic information from these experiments. However, the range of pulling speed that can be probed by AFM studies is limited and force spectroscopy studies performed with techniques enabling a wider range of pulling speeds might highlight different transition states.

The first experiments concentrated on the giant muscle protein titin, which contains a large number of immunoglobulin domains [240]. When a protein is stretched between the tip and the substrate, if more than one domain is comprised between them, a saw-tooth pattern is found as schematized in figure 22. This behaviour is due to a series of entropic and enthalpic contributions, the first ones being related to the initial stretching of the protein and to the stretching of unfolded domains, resembling a common polymer stretching, and the second ones being related to the unfolding of individual domains. Starting from position 1 in figure 22(b) the protein is elongated and the restoring force,
entropic in nature, deflects the cantilever (position 2). When the force exerted by the cantilever is such to unfold one domain, a sudden increase in the chain length makes the cantilever go back to its undeflected state (position 3). The denatured portion of the protein undergoes entropic stretching up to the position where another domain is unfolded (position 4). Each individual domain is responsible for one peak in the force curve. Usually, the peaks are in increasing force order due to the fact that more unstable domains with lower unfolding barrier unfold first. A great advance has been made in the interpretation of force curves by introducing protein engineering techniques in order to have proteins with a known and adjustable number of identical domains. This technique overcame the uncertainty in assigning each force peak in the force curve to a specific domain in the protein [260].

Another protein domain that has been studied is the FN-III domain of the extracellular matrix protein tenascin [261]. This domain presents an unfolding force significantly lower than the unfolding force of Ig domains (about 130 pN for FN-III domains, 150–300 pN for Ig domains). Another useful parameter that can be extracted from force curves is the number of amino acids forming the unfolded domain. This information can be derived from the distance between peaks which corresponds to the contour length increase, upon single domain unfolding. When α-helical domains are unfolded, such as in the case of the cytoskeleton protein spectrin [262], a lower unfolding force is found (25–35 pN), suggesting a relationship between the particular protein domain and the mechanical strength needed to unfold it. When β-barrel domains, such as the Ig-like domains of titin, are unfolded, much more force is needed to break the numerous hydrogen bonds stabilizing this structure, with respect to α-helical domains, in which only hydrophobic interactions stabilize the domain structure. The role of sequence and topology in determining the mechanical stability of domains can be elucidated by AFM force spectroscopy investigations. For example, two Ig domains, I27 and I28, which have low sequence identity but similar topology, present very different mechanical strength, highlighting the importance of side chain interactions for the mechanical stability [263]. Moreover, by exploiting protein engineering techniques, it is possible to show how sequence changes can alter the mechanical properties of proteins [264]. In AFM unfolding experiments the presence of unfolding intermediates may be observed by careful analysis of force curves [265]. Molecules with a role in cell attachment and stress transfer have been studied by force spectroscopy, comparing the unfolding trajectories when intradomain disulfide bonds are intact or disrupted by chemical reduction using the reducing agent DTT [266]. It was found that under reducing conditions the domains fully unfold through an intermediate folded state, whereas, when the disulfide bonds are intact, only a partial unfolding is observed. These studies highlight the role of disulfide bonds in regulating unfolding under tension.

AFM force spectroscopy experiments on proteins have been coupled to the imaging capabilities of AFM. Müller et al [267] imaged a two-dimensional bacterial surface layer of HPI before and after a pulling event. The pulling event, which was preceded by a local increase in the tip–sample force to ensure an attachment of a protomer to the AFM tip, presented a force curve with multiple peaks and subsequent imaging of the same area allowed us to determine which bacterial pore was extracted (figure 23). By this experiment the intramolecular forces of individual proteins have been determined. Also sequential unfolding of transmembrane domains of bacteriorhodopsin embedded in its native purple membrane has been studied, elucidating also the role of pH, temperature and point mutations on the stability of individual transmembrane domains [268].

Protein unfolding experiments by AFM are constantly increasing their popularity and studies are now facing more
relevant biological problems from the initial model cases. The use of force as a protein unfolding agent is of great relevance in particular for those proteins which have a mechanical function in nature. In these proteins individual domains might unfold and refold executing mechanical functions, consequently, force spectroscopy, providing information on the force-induced unfolding of single protein domains, offers new insights into the function of mechanical proteins. α-helical domains have shown to unfold upon forces lower than those required for β-sandwich domains, in accordance with the mechanical stabilization by hydrogen bonds between β-strands. In any case, even for protein which does not have a mechanical function, force spectroscopy investigations can give complementary information with respect to thermal and chemical unfolding. Technical developments, in particular the force-clamp technique, which is able to apply a constant force over time, will allow us to study also protein refolding [269, 270].

7. Perspectives

From the survey included in the previous paragraphs it is evident that AFM is now a commonly used technique in the field of biophysical research. During the last decade it has evolved from a purely imaging tool to a technique which can provide information on interactions between single molecules, which can probe mechanical properties of biological samples at the nanometre scale and can also help in manipulating single molecules. The possibility of studying samples in solution enables us to image biological processes in real time at high spatial resolution. In the following we will summarize the most promising ongoing technical developments as well as some of the most charming research opportunities that AFM will enable us to tackle in the near future.

7.1. Cantilevers and tips

As already noted, the force sensor, including the cantilever and the tip, is the heart of the AFM and it is clear that technical developments are mainly focused on improving the performances of this component. The introduction of carbon nanotube tips [21] has remarkably increased the performances of AFM as far as lateral resolution is concerned and the field of structural biology is starting to benefit from this advancement. However, a great contribution from carbon nanotube tips is also expected in the field of chemical sensing imaging and force spectroscopy. Indeed, nanotubes, at variance with normal AFM tips, have a well-defined surface chemistry and can be specifically functionalized, even with single biomolecules, only at their very ends. In this way, chemical and affinity mapping can be executed with previously unmatched resolution [21, 23] (figure 24).

Other tip modifications will increment the amount of chemical and biochemical information derivable from atomic force microscopy. It has been shown that valinomycin/polyvinyl chloride-modified AFM tips are sensitive to specific ions, allowing us to localize ion pores [271] and to measure ion concentration in a localized region of a surface [272].

Increasing the scanning speed of AFM to improve time resolution is strictly connected to the development of new types of cantilevers. The speed in atomic force microscopy is limited by mechanical constraints [273]. Rapid imaging in contact mode of a biological sample would drastically increase damage and degradation due to the huge dragging force. As far as AFM biological applications are concerned, the major efforts have to be devoted to speed up the scanning process in intermittent contact mode. In order to maintain a high signal-to-noise ratio, cantilevers with higher resonant
frequencies are needed, while their spring constant should remain constant. One way to obtain all these properties is to reduce the mass of the cantilevers, making small cantilevers in order to combine high resonance frequency with small spring constant. Short cantilevers (9–40 μm), endowed with MHz resonance frequency, have been fabricated [274] allowing us to create a sequence of images in liquid at 80 ms intervals [275]. The spreading of these cantilevers to a commercial level, along with the development of optical detection systems for cantilever deflection suitable to deal with this tiny cantilever size, will increase the number of biophysical processes studied both at high spatial and high temporal resolution (video AFM). Together with working on the dimension of the cantilever, one has to work on the dynamic behaviour of the moving parts such as the piezoelectric scanner, which represents the most severe obstacle to high speed imaging. One possible solution to overcome the problems connected to the resonance frequency of the scanner would be to integrate a piezoelectric actuator on the cantilever. However, this solution leads to large spring constants for the cantilever, resulting in possible damage of biological samples. In some cases, the use of smaller high-frequency piezo segments to the moving z-scanner has been introduced [276]. Another limiting factor for high speed imaging in the intermittent contact mode is the time it takes for the oscillating cantilever to change amplitude [277]. A remarkable breakthrough in this sense has been the introduction of an active damping circuit to increase the speed at which the cantilever can respond [278].

As a general comment, the investigation of biological samples would greatly benefit from higher imaging speed. Insights into the mechanisms biomolecular machines exploit to perform their biological functions could be obtained by high speed AFM. High speed AFM will allow us to follow the dynamics of biological processes at the nanometre scale.

Small cantilevers can also be exploited in force spectroscopy experiments. In this case the advancement with respect to conventional cantilevers is in the reduced coefficient of viscous damping which allows the measurement of smaller forces at large bandwidths [279, 280].

The implementation of tip arrays appears also to be very promising, since they will increase drastically the accessible scan area and will enable simultaneous mapping of distinct sample properties if tips functionalized with different chemical groups will be used [281].

7.2. Combination of different techniques

AFM apparatus can be naturally coupled with other techniques to increment the amount of information obtained out of a single scan. The combination of different techniques will endow atomic force microscopy with analytical probes, which are now lacking in conventional AFM investigations. AFM has been successfully integrated with the scanning ion conductance microscope (SICM) obtaining at the same time a topographic image and an ion conductance map [282]. The AFM allows us to maintain a constant distance from the sample surface while measuring the ion flux. Fluorescence detection has already been combined with atomic force microscopy; special fluorescence techniques such as fluorescence resonance energy transfer (FRET) seem particularly appealing for integration with AFM since such a combination could enable us to follow in real time a number of conformational changes at molecular level (e.g. drug induced structural variations) as well as intermolecular interactions in solution and at membrane surface (e.g. diffusion and clustering of membrane proteins). Combination of AFM with electrochemistry will allow us to drive and map electrochemical reactions at high spatial resolution. The scanning electrochemical microscope (SECM) is nowadays an established technique, but in the future, the development of AFM tips sensitive to other electrochemical processes is expected to enlarge the field of electrochemical signal retrieval at high spatial resolution and under controlled load (e.g. mapping ion channel distribution) [283].

8. Conclusions

In this review we have tried to provide an overview on the continuously growing field of AFM studies on the sample of biological interest. The field is too large for this paper to be exhaustive in reviewing all the various works which have been done on biosamples. Therefore, we have decided to focus our efforts on transmitting the feeling of how this technique can be exploited by researchers engaged in biophysical problems and how this technique can provide researchers with new information otherwise inaccessible by other techniques. Finally, we would like to apologize to all those whose work we have missed during the writing of this review.

Acknowledgment

This work has been partially supported by MUIR FIRB Nomade.

References

Figure 24. Chemical force microscopy by carbon nanotube tips: (a) scheme of a pattern made up of regions with different chemical functionalities. (b) tapping-mode image of the pattern in (a) obtained with a carboxyl-terminated nanotube tip. The contrast is due to the different interaction of the tip with the functional groups on the surface. Reprinted with permission from [21]. Copyright 2001, Elsevier Science.

[42] Ohnesorge F and Binning G 1993 True atomic resolution by atomic force microscopy through repulsive and attractive forces Science 260 1451–6

Mou J, Czajkowsky D M and Shao Z 1996 Gramicidin A aggregation in supported gel state phosphatidylycholine bilayers. *Biochemistry* 35 3222–6

Dvorak J A 2003 The application of atomic force microscopy to the study of living vertebrate cells in culture. *Methods* 29 86–96

Dufrêne Y F 2005 Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. *Microbiol.* 32 153–65

Review Article
Review Article

[182] Radmacher M, Tillman R W and Gaub H E 1993 Imaging viscoelasticity by force modulation with the atomic force microscope Biophys. J. 64 735–42

[192] Müller D J and Engel A 1997 The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions Biophys. J. 73 1633–44

[221] Osada T, Tsuchiya Y and Ikai A 2003 Mapping of the receptor-associated protein (RAP) binding proteins on living fibroblast cells using an atomic force microscope Ultramicroscopy 97 353–7

[228] Odijk T 1995 Stiff chains and filament under tension Macromolecules 28 7016–8

[244] Bustamante C, Milligan J F, Siggia E D and Smith M 1994 Entropic elasticity of lambda-phage DNA Science 265 1599–600

and single-stranded DNA molecules Science 271 795–9

