1. The z-axis coincides with the axis of an infinite conducting cylinder of inner radius a, outer radius b. For $a < r < b$, there is a current density flowing around the wire, $\vec{J} = J_0 \hat{\phi}$ A/m2.

For the three regions

(I) $0 < r < a$,

(II) $a < r < b$

(III) $b < r$,

Find:

(a) The \mathbf{B} field.

(b) The \mathbf{A} field.

And then find

(c) The pressure exerted by the magnetic field on the cylinder.
2. A grounded conducting sphere of radius a is inside a sphere of radius b. The region between radius a and radius b is vacuum. The outer sphere is non-conducting, and carries a surface charge density $\sigma_0 \cos \theta$. In the regions:

(I) $a < r < b$

(II) $b < r$

Find the potential Φ.
A hollow grounded conducting sphere of radius R contains a point charge q at the point \mathbf{a}.

(a) Find the potential inside the sphere.

(b) Find the vector force on the charge q.

The sphere of the previous problem is now reduced to a conducting hemisphere, with a conducting flat base. The charge q is still at the point \mathbf{a}.

(e) Find the potential in the hemisphere.

(f) Find the vector force on the charge q.

4. A plane wave of frequency ω, with $\vec{E}_I = E_I \hat{j}$, is normally incident on a conducting plane of conductivity σ. The conducting plane fills the half space $z > 0$. The conductivity is very high, $\sigma \gg \varepsilon \omega$, so the displacement current inside the conductor can be neglected. There is a reflected wave, \vec{E}_R.

(a) Find the B and E fields inside the conductor in terms of their values at $z = 0$, as functions of z, σ and ω.

(b) Find the reflected electric field vector in terms of E_I, σ and ω.
5. An wire stretches along the z-axis from \(z = -\frac{a}{2} \) to \(z = \frac{a}{2} \). An alternating current of angular frequency \(\omega \) runs in the wire, and the radiated EM wave has a wavelength \(\lambda \) that is much greater than the wire length \(a \). A good approximation to the current density in the wire is

\[
\mathbf{J} = I_0 \delta(x) \delta(y) \mathbf{k} \left[\frac{a}{2} - |z| \right] \sin(\omega t) \mathbf{k},
\]

where \(k = \frac{\omega}{c} \).

At large distances \(r \) from the wire, where \(r \gg a \), and \(r \gg \lambda \), find as functions of \(r, \theta, \phi, \omega \) and \(I_0 \):

(a) The vector potential \(A \).
(b) The magnetic field \(B \).
(c) The electric field \(E \).
(d) Find the power radiated per unit solid angle as a function of \(\theta, \phi, \omega \) and \(I_0 \).
(e) Find the wire's electric dipole moment \(\mathbf{p} \), and its magnetic dipole moment \(\mathbf{m} \).