University of Illinois at Chicago
Department of Physics

Classical Mechanics
Qualifying Examination

January 3, 2006
9:00 am-12:00 pm

Full credit can be achieved from completely correct answers to 4 questions. If the student attempts all 5 questions, all of the answers will be graded, and the top 4 scores will be counted toward the exam’s total score.
1. A toy consists of two concentric cylinders with inner radius r and outer radius R. A string is wound around the inner radius and the outer radius can roll without slipping on a rough floor. The string is pulled at angle θ with respect to the horizontal.

 ![Free body diagram]

 a. Draw the free body diagram.
 b. Calculate the angular acceleration.
 c. Prove that there exists a critical angle θ_c, where if $\theta < \theta_c$ the cylinder rolls away from the direction it is pulled, and if $\theta > \theta_c$ the cylinder rolls toward the direction it is pulled.
 d. Determine θ_c

2. A positron e^+ with energy of 250 GeV/c2 travels along the x axis and collides with a stationary electron. A single particle V is produced and only V remains after the collision. Later, V decays into two identical mass ($m = 0.1$ GeV/c2), unstable muons μ^+ and μ^- which have lifetimes of 2×10^{-6} s in their rest frame.

 a. Calculate the v/c of the positron.
 b. What is the mass of particle V?
 c. What is the total energy of the particle V in its rest frame?
 d. What are the momenta of the electron and positron in the V rest frame?
 e. If the muon decays perpendicularly to the x axis in the V rest frame, what approximate angle does it make with respect to the x axis in the lab frame?
 f. How far would the muon travel in one lifetime as measured in the lab frame?
3. A particle of mass m moves in a field \(F = f(r)r \), where \(f(r) = -\frac{C}{r^3} \) and C > 0.

 a. Calculate \(\frac{dl}{dt} \), where \(l = mr^2 \frac{d\theta}{dt} \).

 b. Derive the equation of motion for \(r \) and show you can write it in form
 \[
 \frac{d^2u}{dt^2} + u = -\frac{m}{l^2u^2} f\left(\frac{1}{u}\right), \text{ where } u = \frac{1}{r}.\]
 Hint. Find the relationship of \(\frac{d}{d\theta} \) to \(\frac{d}{dt} \) for the central force.

 c. Show that a possible solution is spiral orbit of the form \(r = r_0 e^{\theta} \). Find all possible solutions.

 d. Show that \(\theta \) varies logarithmically with \(t \) for the spiral orbit from part c.
 Hint: integrate \(l \) to find \(\theta(t) \).

4. Two pendulums are coupled by a massless spring with spring constant \(k \). Both
 pendulums have massless springs of length \(L \). They are separated by distance \(D \). The
 masses are \(m \) and \(2m \). Consider small oscillations.

 a. Solve for the normal modes of the pendulums.

 b. Determine the normal coordinates that undergo simple harmonic motion.
5. A bead of mass m moves along a frictionless wire AB. The wire is fixed at point A and rotates with angular frequency ω about the z axis. θ is fixed

a. Determine the Lagrangian in terms of r, θ and azimuthal angle
b. Determine the Lagrange equation as a function of m, $\frac{dr}{dt}$, ω, r and θ.
c. Solve the equation of motion.