1) **Analysis of a Decay Experiment** - A student in the lab measured the number of Geiger Counter hits for a time of 1 minute from his Tl-204 source. He repeated this experiment a number of times and fit his results to the Gaussian curve

\[f(x) = A \exp \left[-\frac{(x-\mu)^2}{2\sigma^2} \right] \]

as shown in Illustration 1:

![Gaussian fit of results from the trials of a Tl-204 experiment](Illustration 1)

Illustration 1: Gaussian fit of results from the trials of a Tl-204 experiment

a) Approximate the fit values for \(A, \mu, \) and \(\sigma \) **from the curve** shown in Illustration 1 [3 pts]

<table>
<thead>
<tr>
<th>(A)</th>
<th>(\mu)</th>
<th>(\sigma) (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
b) If the time of each run was halved, how would you expect the mean to change? [1 pt]

c) In this experiment, what would Poisson Statistics predict the uncertainty to be? [2 pts]

c) Do you think this is a probable outcome? Why or why not? [2 pts]

2) How is radiation intensity proportional to radius? [2 pts]

 a) r^2

 b) r

 c) 1

 d) r^{-1}

 e) r^{-2}