Chapter 14

Periodic Motion

PowerPoint® Lectures for
University Physics, Thirteenth Edition
– Hugh D. Young and Roger A. Freedman

Lectures by Wayne Anderson

Copyright © 2012 Pearson Education Inc.
Goals for Chapter 14

• To describe oscillations in terms of amplitude, period, frequency and angular frequency
• To do calculations with simple harmonic motion
• To analyze simple harmonic motion using energy
• To apply the ideas of simple harmonic motion to different physical situations
• To analyze the motion of a simple pendulum
• To examine the characteristics of a physical pendulum
• To explore how oscillations die out
• To learn how a driving force can cause resonance
Introduction

- Why do dogs walk faster than humans? Does it have anything to do with the characteristics of their legs?

- Many kinds of motion (such as a pendulum, musical vibrations, and pistons in car engines) repeat themselves. We call such behavior *periodic motion* or *oscillation*.
What causes periodic motion?

- If a body attached to a spring is displaced from its equilibrium position, the spring exerts a **restoring force** on it, which tends to restore the object to the equilibrium position. This force causes oscillation of the system, or **periodic motion**.

- Figure 14.2 at the right illustrates the restoring force F_x.
Characteristics of periodic motion

- The *amplitude*, A, is the maximum magnitude of displacement from equilibrium.
- The *period*, T, is the time for one cycle.
- The *frequency*, f, is the number of cycles per unit time.
- The *angular frequency*, ω, is 2π times the frequency: $\omega = 2\pi f$.
- The frequency and period are reciprocals of each other: $f = 1/T$ and $T = 1/f$.
- Follow Example 14.1.
Simple harmonic motion (SHM)

- When the restoring force is directly proportional to the displacement from equilibrium, the resulting motion is called simple harmonic motion (SHM).

- An ideal spring obeys Hooke’s law, so the restoring force is $F_x = -kx$, which results in simple harmonic motion.
Simple harmonic motion viewed as a projection

- Simple harmonic motion is the projection of uniform circular motion onto a diameter, as illustrated in Figure 14.5 below.
Characteristics of SHM

- For a body vibrating by an ideal spring:

\[
\omega = \sqrt{\frac{k}{m}} \quad f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \quad T = \frac{1}{f} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}
\]

- Follow Example 14.2 and Figure 14.8 below.

(a) [Diagram of a spring with a mass attached, showing a force of 6.0 N and positions x = 0 and x = 0.030 m]

(b) [Diagram of a spring with a mass of 0.50 kg, showing positions x = 0 and x = 0.020 m]
The displacement as a function of time for SHM with phase angle ϕ is $x = A\cos(\omega t + \phi)$. (See Figure 14.9 at the right.)

Changing m, A, or k changes the graph of x versus t, as shown below.

(a) Increasing m; same A and k
Mass m increases from curve 1 to 2 to 3. Increasing m alone increases the period.

(b) Increasing k; same A and m
Force constant k increases from curve 1 to 2 to 3. Increasing k alone decreases the period.

(c) Increasing A; same k and m
Amplitude A increases from curve 1 to 2 to 3. Changing A alone has no effect on the period.
Graphs of displacement, velocity, and acceleration

- The graph below shows the effect of different phase angles.

These three curves show SHM with the same period T and amplitude A but with different phase angles ϕ.

- The graphs below show x, v_x, and a_x for $\phi = \pi/3$.

 (a) Displacement x as a function of time t

 $x(t) = A \cos(\omega t + \phi)$

 $x_{\text{max}} = A$

 $x_{\text{min}} = -A$

(b) Velocity v_x as a function of time t

 $v_x(t) = -\omega A \sin(\omega t + \phi)$

 $v_{\text{max}} = \omega A$

 $v_{\text{min}} = -\omega A$

The v_x-t graph is shifted by $\frac{1}{4}$ cycle from the x-t graph.

(c) Acceleration a_x as a function of time t

 $a_x(t) = -\omega^2 A \cos(\omega t + \phi)$

 $a_{\text{max}} = \omega^2 A$

 $a_{\text{min}} = -\omega^2 A$

The a_x-t graph is shifted by $\frac{1}{4}$ cycle from the v_x-t graph and by $\frac{1}{2}$ cycle from the x-t graph.
Behavior of v_x and a_x during one cycle

- Figure 14.13 at the right shows how v_x and a_x vary during one cycle.

- Refer to Problem-Solving Strategy 14.1.

- Follow Example 14.3.
Energy in SHM

- The total mechanical energy \(E = K + U \) is conserved in SHM:

\[
E = \frac{1}{2} mv_x^2 + \frac{1}{2} kx^2 = \frac{1}{2} kA^2 = \text{constant}
\]
Energy diagrams for SHM

- Figure 14.15 below shows energy diagrams for SHM.
- Refer to Problem-Solving Strategy 14.2.
- Follow Example 14.4.

(a) The potential energy U and total mechanical energy E for a body in SHM as a function of displacement x

(b) The same graph as in (a), showing kinetic energy K as well

At $x = \pm A$ the energy is all potential; the kinetic energy is zero.

At $x = 0$ the energy is all kinetic; the potential energy is zero.

At these points the energy is half kinetic and half potential.
Energy and momentum in SHM

- Follow Example 14.5 using Figure 14.16.
Vertical SHM

• If a body oscillates vertically from a spring, the restoring force has magnitude kx. Therefore the vertical motion is SHM.

• Follow Example 14.6.
Angular SHM

- A coil spring (see Figure 14.19 below) exerts a restoring torque $\tau_z = -\kappa \theta$, where κ is called the torsion constant of the spring.

- The result is angular simple harmonic motion.

![Diagram of angular simple harmonic motion with a balance wheel and a spring. The spring torque τ_z opposes the angular displacement θ.](image-url)
Vibrations of molecules

- Figure 14.20 shows two atoms having centers a distance r apart, with the equilibrium point at $r = R_0$.

- If they are displaced a small distance x from equilibrium, the restoring force is $F_r = -(72U_0/R_0^2)x$, so $k = 72U_0/R_0^2$ and the motion is SHM.

- Follow Example 14.7.
The simple pendulum

- A *simple pendulum* consists of a point mass (the bob) suspended by a massless, unstretchable string.

- If the pendulum swings with a small amplitude θ with the vertical, its motion is simple harmonic. (See Figure 14.21 at the right.)

- Follow Example 14.8.
The physical pendulum

- A physical pendulum is any real pendulum that uses an extended body instead of a point-mass bob.

- For small amplitudes, its motion is simple harmonic. (See Figure 14.23 at the right.)

- Follow Example 14.9.
Tyrannosaurus rex and the physical pendulum

- We can model the leg of *Tyrannosaurus rex* as a physical pendulum.

- Follow Example 14.10 using Figure 14.24 below.
Damped oscillations

- Real-world systems have some dissipative forces that decrease the amplitude.
- The decrease in amplitude is called *damping* and the motion is called *damped oscillation*.
- Figure 14.26 at the right illustrates an oscillator with a small amount of damping.
- The mechanical energy of a damped oscillator decreases continuously.

With stronger damping (larger b):
- The amplitude (shown by the dashed curves) decreases more rapidly.
- The period T increases ($T_0 =$ period with zero damping).
Forced oscillations and resonance

- **A forced oscillation** occurs if a *driving force* acts on an oscillator.
- **Resonance** occurs if the frequency of the driving force is near the *natural frequency* of the system. (See Figure 14.28 below.)